Eh Tan  (中文版 / English Version)
 Tan, Eh  Associate Research Fellow

 TEL:+886-2-2783-9910 ext. 1503
 FAX:+886-2-2783-9871
 E-mail:tan2@earth.sinica.edu.tw

 Specialty:Geodynamics, Geophysics, Parallel supercomputing

 Research Projects

[Education]
  • 2006 : Ph.D., Seismological Laboratory, California Institute of Technology.
  • 1997 : B.S., Department of Physics, National Taiwan University.

[Experiences]
  • 2020/04 - present : Associate Research Fellow, Institute of Earth Sciences , Academia Sinica, Taiwan
  • 2012/07 - 2020/04 : Assistant Research Fellow, Institute of Earth Sciences , Academia Sinica, Taiwan
  • 2012/02 - 2012/03 : Visiting Scholar, Earth Science and Engineering Program, King Abdullah University of Sciences and Technology, Saudi Arabia
  • 2010/02 - 2012/01 : Post-doctoral Fellow, Institute for Geophysics, University of Texas at Austin
  • 2006/07 - 2010/01 : Staff Scientist, Computational Infrastructure for Geodynamics, California Institute of Technology

[Publications]

  Journal Papers:
  1. Chen, K.-X., Kuo, B.-Y., Lin, T.-J., Lin, P.-Y. P., Gung, Y., Tan, E., et al. (2024). Shear-Dominant Continental Rifting in Northern Ryukyu Revealed by Ambient Noise Tomography. J. Geophys. Res., 129(11), e2024JB029448. doi:10.1029/2024JB029448. (Link)
  2. Tan, E., Y.-H. Lee, J.-B. Chang, M.-J. Zheng, C. J. Shyu (2024) Mountain building process of the Taiwan orogeny, Sci. Adv., 10, eadp8056, doi:10.1126/sciadv.adp8056. (Link)
  3. Lee, F.-Y., Tan, E., Chang, E. T.-Y. (2024). Escape Mechanism with Shallow Ramp and Décollements in Southwest Taiwan. Geosciences, 13(2), 41. doi:10.3390/geosciences13020041 (Link)
  4. Shyu, C. J., E. Tan, L. A. Kirstein, F. M. Stuart, Y.-G. Chen (2023). The Exhumation History of the Middle Hsuehshan Range, Taiwan, as Revealed by Zircon Thermochronological Modeling, Tectonophysics, 860, 229907, doi:10.1016/j.tecto.2023.229907. (Link)
  5. Kuo, L.-W., Sone, H., Luzin, V., Yeh, E.-C., Hsu, Y.-J., and Tan, E. (2022), Gouge fabrics reset by thermal pressurization record stress on faults after earthquakes, Geology, 50, 1033-1037. doi:10.1130/G50217.1. (Link)
  6. Peng, C.-C., Kuo, B.-Y., and Tan, E. (2021). Dual structure of poloidal and toroidal flow under the Cocos subduction zone, Earth Planet. Sci. Lett., 565, 116911. doi:10.1016/j.epsl.2021.116911. (Link)
  7. Tan, E. (2020), Subduction of transitional crust at the Manila Trench and its geophysical implications, J. Asian Earth Sci., 187, 104100, doi:10.1016/j.jseaes.2019.104100. (Link)
  8. Citron, R.I., M. Manga, and E. Tan (2018), A hybrid origin of the Martian crustal dichotomy: Degree-1 convection antipodal to a giant impact, Earth Planet. Sci. Lett., 491, 58-86, doi:10.1016/j.epsl.2018.03.031. (Link)
  9. Persaud, P., E. Tan, J. Contreras, and L. Lavier (2017), A bottom-driven mechanism for distributed faulting in the Gulf of California Rift, Tectonophysics, 719-720, 51-65, doi:10.1016/j.tecto.2016.11.024. (Link)
  10. Tan, E. (2017), The effects of mantle wedge serpentinization on slab dips, Terr. Atmos. Oceanic Sci., 28, 259-269, doi:10.3319/TAO.2016.09.21.01. (Link)
  11. Chang Y.Y., W.P. Hsieh, E. Tan, and J. Chen (2017), Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle, Proc. Natl. Acad. Sci. USA, 114, 4078-4081 doi:10.1073/pnas.1616216114. (Link)
  12. Logan, L.C., L.L. Lavier, E. Choi, E. Tan, and G.A. Catania (2016) Semi-brittle rheology and ice dynamics in DynEarthSol3D, Cryosphere, 11, 117-132, doi:10.5194/tc-2016-88. (LINK)
  13. Ta, T., K. Choo, E. Tan, B. Jang, E. Choi (2015), Accelerating DynEarthSol3D on tightly coupled CPU-GPU heterogeneous processors, Computers & Geosciences, 79, 27-37, doi:10.1016/j.cageo.2015.03.003. (Link)
  14. Choi, E., E. Tan, L.L. Lavier, and V.M. Calo (2013), DynEarthSol2D: An efficient unstructured finite element method to study long-term tectonic deformation, J. Geophys. Res., 118, doi:10.1002/jgrb.50148. (Link)
  15. Burstedde, C., G. Stadler, A. Alisic, L.C. Wilcox, E. Tan, M. Gurnis, and O. Ghattas (2013), Large-scale adaptive mantle convection simulation, Geophys. J. Int., 192, 889-906, doi:10.1093/gji/ggs070.(Link)
  16. Tan, E., L.L. Lavier, H.J.A. van Avendonk, and A. Heuret (2012), The role of frictional strength on plate coupling at the subduction interface, Geochem. Geophys. Geosyst., 13, Q10006, doi:10.1029/2012GC004214. (PDF)
  17. DiCaprio, L., M. Gurnis, R.D. Mueller, and E. Tan (2011), Mantle dynamics of continent-wide Cenozoic subsidence and tilting of Australia, Lithosphere, 3, 311-316, doi:10.1130/L140.1. (PDF)
  18. Tan, E., W. Leng, S. Zhong, and M. Gurnis (2011), On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle, Geochem. Geophys. Geosyst., 12, Q07005, doi:10.1029/2011GC003665. (PDF)
  19. King, S.D., C. Lee, P.E. van Keken, W. Leng, S. Zhong, E. Tan, N. Tosi, and M.C. Kameyama (2010), A Community Benchmark for 2D Cartesian Compressible Convection in the Earth’s Mantle, Geophys. J. Int., 180, 73-87, doi:10.1111/j.1365-246X.2009.04413.x. (PDF)
  20. Helmberger, D., D. Sun, L. Liu, E. Tan, and M. Gurnis (2009), Review of large low shear velocity provinces in the lower mantle, Geochim. Cosmochim. Ac., 73, A520.
  21. Burstedde, C., O. Ghattas, M. Gurnis, G. Stadler, E. Tan, T. Tu, L. C. Wilcox, and S. Zhong (2008), Scalable adaptive mantle convection simulation on petascale supercomputers, International Conference for High Performance Computing, Networking, Storage, and Analysis (ACM/IEEE Supercomputing 2008), 15 pp, doi:10.1109/sc.2008.5214248. (PDF)
  22. Zhong, S., A. McNamara, E. Tan, L. Moresi, and M. Gurnis (2008), A benchmark study on mantle convection in a 3-D spherical shell using CitcomS, Geochem., Geophys., Geosyst., 9, Q10017, doi:10.1029/2008GC002048. (PDF)
  23. Tan, E., and M. Gurnis (2007),  Compressible thermochemical convection and application to lower mantle structures, J. Geophys. Res., 112, B06304, doi:10.1029/2006JB004505. (PDF)
  24. Tan, E., E. Choi, P. Thoutireddy, M. Gurnis, and M. Aivazis (2006), GeoFramework: coupling multiple models of mantle convection within a computational framework, Geochem. Geophys. Geosyst., 7, Q06001, doi:10.1029/2005GC001155. (PDF)
  25. Tan, E., and M. Gurnis (2005), Metastable superplumes and mantle compressibility, Geophys. Res. Lett., 32, L20307, doi:10.1029/2005GL024190. (PDF)
  26. Tan, E., M. Gurnis, and L. Han (2002), Slabs in the lower mantle and their modulation of plume formation, Geochem. Geophys. Geosyst., 3, 1067, doi:10.1029/2001GC000238. (PDF)
  27. Ni, S., E. Tan, M. Gurnis, and D. Helmberger (2002), Sharp sides to the African superplume, Science, 296, 1850-1852, doi:10.1126/science.1070698. (PDF)

 Books and Book Chapters:
  1. Gurnis, M., W. Landry, E. Tan, L. Armendariz, L. Strand, and M. Aivazis (2010), Development, verification and maintenance of computational software in geodynamics, in G. R. Keller and C. Baru, eds., Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, Cambridge University Press, p49-p67, doi:10.1017/cbo9780511976308.006.
  2. Tan, E., M. Gurnis, L. Armendariz, L. Strand, and S. Kientz (2010), CitcomS User Manual, http://www.geodynamics.org/cig/software/citcoms/citcoms.pdf, 132 pp..
  3. Tan, E. (2006), I. Multi-scale dynamics of mantle plumes and II. Compressible thermo-chemical convection and the stability of  mantle superplumes, Ph.D. Thesis, California Institute of Technology, 180 pp..